Binary to Decimal Converter
To use binary to decimal converter, type a binary value e.g. "1110" and click on the Convert button and you will get the decimal value of 14 on the right side. The binary to decimal conversion table for values up to 255 is shown below.
Binary to Decimal Conversion:
- Binary Numeral System
- Decimal Numeral System
- How to Convert Binary to Decimal
- How to Convert Binary Fraction to Decimal
- FAQs (Binary to Decimal Conversion)
- Binary to Decimal Table
Binary Numeral System
The binary number system is a way of representing numbers using only two symbols: 0 and 1, with base 2 as its radix. In the digital world, computers are entirely built on the binary system. Every piece of information, from text to images, is converted into binary code for processing. Numbers are expressed as powers of 2, such as 20, 21, 22, and so forth. Each individual binary digit is called a bit, and a collection of 8 bits forms a Byte.
Example:
Binary value (1100.101)2 is equal to decimal number (12.625)10. It can be represented as powers to the base 2:
Digit | Position | Power of 2 | Value |
---|---|---|---|
1 | 23 (Eights place) | 23 = 8 | 1 × 8 = 8 |
1 | 22 (Fours place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (Twos place) | 21 = 2 | 0 × 2 = 0 |
0 | 20 (Ones place) | 20 = 1 | 0 × 1 = 0 |
1 | 2-1 (Halves place) | 2-1 = 0.5 | 1 × 0.5 = 0.5 |
0 | 2-2 (Quarters place) | 2-2 = 0.25 | 0 × 0.25 = 0 |
1 | 2-3 (Eighths place) | 2-3 = 0.125 | 1 × 0.125 = 0.125 |
(1100.101)2 = (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20) + (1 × 2-1) + (0 × 2-2) + (1 × 2-2) = (8 + 4 + 0.5 + 0.125) = (12.625)10 (Decimal)
Decimal Numeral System
The decimal system is built on base 10, meaning it relies on ten unique symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. This base-10 structure is the standard method used worldwide to represent both whole numbers and fractions. Each digit in a decimal number is assigned a value according to powers of 10 (100, 101, 102, 10-1, etc.).
Decimal number "6945.395" can be expressed as powers of 10:
Digit | Position | Power of 10 | Value |
---|---|---|---|
6 | 103 (Thousands place) | 103 = 1000 | 6 × 1000 = 6000 |
9 | 102 (Hundreds place) | 102 = 100 | 9 × 100 = 900 |
4 | 101 (Tens place) | 101 = 10 | 4 × 10 = 40 |
5 | 100 (Ones place) | 100 = 1 | 5 × 1 = 5 |
3 | 10-1 (Tenths place) | 10-1 = 0.1 | 3 × 0.1 = 0.3 |
9 | 10-2 (Hundredths place) | 10-2 = 0.01 | 9 × 0.01 = 0.09 |
5 | 10-3 (Thousandths place) | 10-3 = 0.001 | 5 × 0.001 = 0.005 |
Total = (6 × 103) + (9 × 102) + (4 × 101) + (5 × 100) + (3 × 10-1) + (9 × 10-2) + (5 × 10-3) = 6000 + 900 + 40 + 5 + 0.3 + 0.09 + 0.005 = 6945.395
How to Convert Binary to Decimal
There are two ways to convert a binary number to a decimal equivalent. First is the position based approach which is described in the above example. The second method is called the double dabble algorithm or shift-and-add-3 algorithm.
Method-1: Position Based Approach
In this approach, there are two steps to convert a binary number to a decimal.
-
Step-1: Represent the bits of binary number as powers to the base 2, from the Least Significant Bit (LSB - rightmost bit) position to the Most Significant Bit (MSB - leftmost bit).
-
Step-2: Multiply the bits values to the powers to the base 2 and add the results.
How to Convert Binary Fraction to Decimal Value
Follow these steps to convert fractional binary value to a decimal:
Step-1: Get the fractional value from the binary number (101.110) e.g. 110 is the fractional part.
Step-2: Multiply each bit by 2-n where n starts at 1 for the first digit after the binary point and increases rightward. For example, the first bit 1 is multiplied by 2-1, the next bit 1 is multiplied by 2-2 and so on.
Step-3: Add the results to get the fractional part of the final decimal value.
Example 1: Convert (100010)2 to decimal.
Bits | Position | Power of 2 | Value |
---|---|---|---|
1 | 25 (32’s place) | 25 = 32 | 1 × 32 = 32 |
0 | 24 (16’s place) | 24 = 16 | 0 × 16 = 0 |
0 | 23 (8’s place) | 23 = 8 | 0 × 8 = 0 |
0 | 22 (4’s place) | 22 = 4 | 0 × 4 = 0 |
1 | 21 (2’s place) | 21 = 2 | 1 × 2 = 2 |
0 | 20 (1’s place) | 20 = 1 | 0 × 1 = 0 |
Example 2: Convert (11101101)2 to decimal.
Bits | Position | Power of 2 | Value |
---|---|---|---|
1 | 27 (128’s place) | 27 = 128 | 1 × 128 = 128 |
1 | 26 (64’s place) | 26 = 64 | 1 × 64 = 64 |
1 | 25 (32’s place) | 25 = 32 | 1 × 32 = 32 |
0 | 24 (16’s place) | 24 = 16 | 0 × 16 = 0 |
1 | 23 (8’s place) | 23 = 8 | 1 × 8 = 8 |
1 | 22 (4’s place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (2’s place) | 21 = 2 | 0 × 2 = 0 |
1 | 20 (1’s place) | 20 = 1 | 1 × 1 = 1 |
Example 3: Convert (1010111001101)2 to decimal.
Bits | Position | Power of 2 | Value |
---|---|---|---|
1 | 212 (4096’s place) | 212 = 4096 | 1 × 4096 = 4096 |
0 | 211 (2048’s place) | 211 = 2048 | 0 × 2048 = 0 |
1 | 210 (1024’s place) | 210 = 1024 | 1 × 1024 = 1024 |
0 | 29 (512’s place) | 29 = 512 | 0 × 512 = 0 |
1 | 28 (256’s place) | 28 = 256 | 1 × 256 = 256 |
1 | 27 (128’s place) | 27 = 128 | 1 × 128 = 128 |
1 | 26 (64’s place) | 26 = 64 | 1 × 64 = 64 |
0 | 25 (32’s place) | 25 = 32 | 0 × 32 = 0 |
0 | 24 (16’s place) | 24 = 16 | 0 × 16 = 0 |
1 | 23 (8’s place) | 23 = 8 | 1 × 8 = 8 |
1 | 22 (4’s place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (2’s place) | 21 = 2 | 0 × 2 = 0 |
1 | 20 (1’s place) | 20 = 1 | 1 × 1 = 1 |
Example 4: Convert (11010111.0111)2 to decimal.
Bits | Position | Power of 2 | Value |
---|---|---|---|
1 | 27 (128’s place) | 27 = 128 | 1 × 128 = 128 |
1 | 26 (64’s place) | 26 = 64 | 1 × 64 = 64 |
0 | 25 (32’s place) | 25 = 32 | 0 × 32 = 0 |
1 | 24 (16’s place) | 24 = 16 | 1 × 16 = 16 |
0 | 23 (8’s place) | 23 = 8 | 0 × 8 = 0 |
1 | 22 (4’s place) | 22 = 4 | 1 × 4 = 4 |
1 | 21 (2’s place) | 21 = 2 | 1 × 2 = 2 |
1 | 20 (1’s place) | 20 = 1 | 1 × 1 = 1 |
Bits | Position | Power of 2 | Value |
---|---|---|---|
0 | 2-1 (1/2 place) | 2-1 = 0.5 | 0 × 0.5 = 0 |
1 | 2-2 (1/4 place) | 2-2 = 0.25 | 1 × 0.25 = 0.25 |
1 | 2-3 (1/8 place) | 2-3 = 0.125 | 1 × 0.125 = 0.125 |
1 | 2-4 (1/16 place) | 2-4 = 0.0625 | 1 × 0.0625 = 0.0625 |
Example 5: Convert (1101010101.001101)2 to decimal.
Bits | Position | Power of 2 | Value |
---|---|---|---|
1 | 29 (512’s place) | 29 = 512 | 1 × 512 = 512 |
1 | 28 (256’s place) | 28 = 256 | 1 × 256 = 256 |
0 | 27 (128’s place) | 27 = 128 | 0 × 128 = 0 |
1 | 26 (64’s place) | 26 = 64 | 1 × 64 = 64 |
0 | 25 (32’s place) | 25 = 32 | 0 × 32 = 0 |
1 | 24 (16’s place) | 24 = 16 | 1 × 16 = 16 |
0 | 23 (8’s place) | 23 = 8 | 0 × 8 = 0 |
1 | 22 (4’s place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (2’s place) | 21 = 2 | 0 × 2 = 0 |
1 | 20 (1’s place) | 20 = 1 | 1 × 1 = 1 |
Bits | Position | Power of 2 | Value |
---|---|---|---|
0 | 2-1 (1/2 place) | 2-1 = 0.5 | 0 × 0.5 = 0 |
0 | 2-2 (1/4 place) | 2-2 = 0.25 | 0 × 0.25 = 0 |
1 | 2-3 (1/8 place) | 2-3 = 0.125 | 1 × 0.125 = 0.125 |
1 | 2-4 (1/16 place) | 2-4 = 0.0625 | 1 × 0.0625 = 0.0625 |
0 | 2-5 (1/32 place) | 2-5 = 0.03125 | 0 × 0.03125 = 0 |
1 | 2-6 (1/64 place) | 2-6 = 0.015625 | 1 × 0.015625 = 0.015625 |
Method-2: Double Dabble Algorithm Or Shift-And-Add-3 Algorithm
In this algorithm, there are three steps involved to convert a binary number to a decimal.
Step-1: Start from the Most Significant Bit (MSB) position (left most digit). Here the total is 0 and at each step, double the previous total and add the current digit.
Step-2: Shift to the right bit position and double previous total and add the current bit value. Repeat this step till the Least Significant Bit (LSB) value is reached.
Step-3: The result at the end is the decimal equivalent value.
Example 1: Convert (101010)2 to the decimal value.
MSB | LSB | |||||
---|---|---|---|---|---|---|
Bits: | 1 | 0 | 1 | 0 | 1 | 0 |
Bit Position (from MSB) |
Bit Value | Totalprevious | Totalcurrent |
---|---|---|---|
25 | 1 | 0 | (0 × 2) + 1 = 1 |
24 | 0 | 1 | (1 × 2) + 0 = 2 |
23 | 1 | 2 | (2 × 2) + 1 = 5 |
22 | 0 | 5 | (5 × 2) + 0 = 10 |
21 | 1 | 10 | (10 × 2) + 1 = 21 |
20 | 0 | 21 | (21 × 2) + 0 = 42 |
Example 2: Convert (1110110)2 to the decimal value.
MSB | LSB | ||||||
---|---|---|---|---|---|---|---|
Bits: | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
Bit Position (from MSB) |
Bit Value | Totalprevious | Totalcurrent |
---|---|---|---|
26 | 1 | 0 | (0 × 2) + 1 = 1 |
25 | 1 | 1 | (1 × 2) + 1 = 3 |
24 | 1 | 3 | (3 × 2) + 1 = 7 |
23 | 0 | 7 | (7 × 2) + 0 = 14 |
22 | 1 | 14 | (14 × 2) + 1 = 29 |
21 | 1 | 29 | (29 × 2) + 1 = 59 |
20 | 0 | 59 | (59 × 2) + 0 = 118 |
Example 3: Convert (11011011.011)2 to the decimal value.
MSB | LSB | Fractional Part | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bits: | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | . | 0 | 1 | 1 |
Bit Position (from MSB) |
Bit Value | Totalprevious | Totalcurrent |
---|---|---|---|
27 | 1 | 0 | (0 × 2) + 1 = 1 |
26 | 1 | 1 | (1 × 2) + 1 = 3 |
25 | 0 | 3 | (3 × 2) + 0 = 6 |
24 | 1 | 6 | (6 × 2) + 1 = 13 |
23 | 1 | 13 | (13 × 2) + 1 = 27 |
22 | 0 | 27 | (27 × 2) + 0 = 54 |
21 | 1 | 54 | (54 × 2) + 1 = 109 |
20 | 1 | 109 | (109 × 2) + 1 = 219 |
2-1 | 0 | 219 | 219 + (0 × 0.5) = 219.0 |
2-2 | 1 | 219.0 | 219 + (1 × 0.25) = 219.25 |
2-3 | 1 | 219.25 | 219 + (1 × 0.125) = 219.375 |
Frequently Ask Questions: Binary to Decimal Conversion
Q1: For an 8-bit binary number what is maximum unsigned and signed value in decimal?
An 8-bit unsigned binary number can have bits: b7 b6 b5 b4 b3 b2 b1 b0, where each bit is either 0 or 1. Maximum value occurs when all bits are 1 i.e. (11111111)2.
(1 × 27) + (1 × 26) + (1 × 25) + (1 × 24) + (1 × 23) + (1 × 22) + (1 × 21) + (1 × 20) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
Largest decimal for 8-bit unsigned: 255
For signed numbers, the MSB (most significant bit) is the sign bit: 0 = positive, 1 = negative.
Maximum positive value occurs when MSB = 0 and all other bits = 1 i.e. (01111111)2
Therefore, largest signed value = (0 × 27) + (1 × 26) + (1 × 25) + (1 × 24) + (1 × 23) + (1 × 22) + (1 × 21) + (1 × 20) = 0 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127
Q2: How to convert 8-bit two’s complement binary number 11101011 to decimal?
In two’s complement, the most significant bit (MSB) is the sign bit:
0 shows positive value
1 shows negative value
Here, in the given number MSB = 1, so the number is negative. Take the 2's complement:
Invert Bits: (00010100)2
Add 1: 00010100 + 1 = (00010101)2 = (21)10
Since the original number was negative (MSB = 1), we apply the negative sign: -21
Q3: Convert the 12-bit unsigned binary number 111100110101 to decimal?
(1 × 211) + (1 × 210) + (1 × 29) + (1 × 28) + (1 × 25) + (1 × 24) + (1 × 22) + (1 × 20) = 2048 + 1024 + 512 + 256 + 32 + 16 + 4 + 1 = (3893)10
Q4: What is the largest possibe decimal value for 16-bit unsigned binary number?
For unsigned number the largest decimal is: (111111111111)2 = (65535)10
Q5: How are the fractional values represented from binary to decimal ?
In binary, the fractional part (digits after the decimal point) represents negative powers of 2:
If b is used to represents bits then (0.b1b2b3....)2 = b1 × 2-1 + b2 × 2-2 + b3 × 2-3 + .......
b1 is the first bit after the point and it represents 2-1 = 1/21 = 1/2 place
b2 represents 2-2 = 1/22 = 1/4 place
b3 represents 2-3 = 1/23 = 1/8 place
And so on ...
Binary to Decimal Table
Binary | Decimal |
---|---|
00000001 | 1 |
00000010 | 2 |
00000011 | 3 |
00000100 | 4 |
00000101 | 5 |
00000110 | 6 |
00000111 | 7 |
00001000 | 8 |
00001001 | 9 |
00001010 | 10 |
00001011 | 11 |
00001100 | 12 |
00001101 | 13 |
00001110 | 14 |
00001111 | 15 |
00010000 | 16 |
00010001 | 17 |
00010010 | 18 |
00010011 | 19 |
00010100 | 20 |
00010101 | 21 |
00010110 | 22 |
00010111 | 23 |
00011000 | 24 |
00011001 | 25 |
00011010 | 26 |
00011011 | 27 |
00011100 | 28 |
00011101 | 29 |
00011110 | 30 |
00011111 | 31 |
00100000 | 32 |
00100001 | 33 |
00100010 | 34 |
00100011 | 35 |
00100100 | 36 |
00100101 | 37 |
00100110 | 38 |
00100111 | 39 |
00101000 | 40 |
00101001 | 41 |
00101010 | 42 |
00101011 | 43 |
00101100 | 44 |
00101101 | 45 |
00101110 | 46 |
00101111 | 47 |
00110000 | 48 |
00110001 | 49 |
00110010 | 50 |
00110011 | 51 |
00110100 | 52 |
00110101 | 53 |
00110110 | 54 |
00110111 | 55 |
00111000 | 56 |
00111001 | 57 |
00111010 | 58 |
00111011 | 59 |
00111100 | 60 |
00111101 | 61 |
00111110 | 62 |
00111111 | 63 |
01000000 | 64 |
Binary | Decimal |
---|---|
01000001 | 65 |
01000010 | 66 |
01000011 | 67 |
01000100 | 68 |
01000101 | 69 |
01000110 | 70 |
01000111 | 71 |
01001000 | 72 |
01001001 | 73 |
01001010 | 74 |
01001011 | 75 |
01001100 | 76 |
01001101 | 77 |
01001110 | 78 |
01001111 | 79 |
01010000 | 80 |
01010001 | 81 |
01010010 | 82 |
01010011 | 83 |
01010100 | 84 |
01010101 | 85 |
01010110 | 86 |
01010111 | 87 |
01011000 | 88 |
01011001 | 89 |
01011010 | 90 |
01011011 | 91 |
01011100 | 92 |
01011101 | 93 |
01011110 | 94 |
01011111 | 95 |
01100000 | 96 |
01100001 | 97 |
01100010 | 98 |
01100011 | 99 |
01100100 | 100 |
01100101 | 101 |
01100110 | 102 |
01100111 | 103 |
01101000 | 104 |
01101001 | 105 |
01101010 | 106 |
01101011 | 107 |
01101100 | 108 |
01101101 | 109 |
01101110 | 110 |
01101111 | 111 |
01110000 | 112 |
01110001 | 113 |
01110010 | 114 |
01110011 | 115 |
01110100 | 116 |
01110101 | 117 |
01110110 | 118 |
01110111 | 119 |
01111000 | 120 |
01111001 | 121 |
01111010 | 122 |
01111011 | 123 |
01111100 | 124 |
01111101 | 125 |
01111110 | 126 |
01111111 | 127 |
10000000 | 128 |
Binary | Decimal |
---|---|
10000001 | 129 |
10000010 | 130 |
10000011 | 131 |
10000100 | 132 |
10000101 | 133 |
10000110 | 134 |
10000111 | 135 |
10001000 | 136 |
10001001 | 137 |
10001010 | 138 |
10001011 | 139 |
10001100 | 140 |
10001101 | 141 |
10001110 | 142 |
10001111 | 143 |
10010000 | 144 |
10010001 | 145 |
10010010 | 146 |
10010011 | 147 |
10010100 | 148 |
10010101 | 149 |
10010110 | 150 |
10010111 | 151 |
10011000 | 152 |
10011001 | 153 |
10011010 | 154 |
10011011 | 155 |
10011100 | 156 |
10011101 | 157 |
10011110 | 158 |
10011111 | 159 |
10100000 | 160 |
10100001 | 161 |
10100010 | 162 |
10100011 | 163 |
10100100 | 164 |
10100101 | 165 |
10100110 | 166 |
10100111 | 167 |
10101000 | 168 |
10101001 | 169 |
10101010 | 170 |
10101011 | 171 |
10101100 | 172 |
10101101 | 173 |
10101110 | 174 |
10101111 | 175 |
10110000 | 176 |
10110001 | 177 |
10110010 | 178 |
10110011 | 179 |
10110100 | 180 |
10110101 | 181 |
10110110 | 182 |
10110111 | 183 |
10111000 | 184 |
10111001 | 185 |
10111010 | 186 |
10111011 | 187 |
10111100 | 188 |
10111101 | 189 |
10111110 | 190 |
10111111 | 191 |
11000000 | 192 |
Binary | Decimal |
---|---|
11000001 | 193 |
11000010 | 194 |
11000011 | 195 |
11000100 | 196 |
11000101 | 197 |
11000110 | 198 |
11000111 | 199 |
11001000 | 200 |
11001001 | 201 |
11001010 | 202 |
11001011 | 203 |
11001100 | 204 |
11001101 | 205 |
11001110 | 206 |
11001111 | 207 |
11010000 | 208 |
11010001 | 209 |
11010010 | 210 |
11010011 | 211 |
11010100 | 212 |
11010101 | 213 |
11010110 | 214 |
11010111 | 215 |
11011000 | 216 |
11011001 | 217 |
11011010 | 218 |
11011011 | 219 |
11011100 | 220 |
11011101 | 221 |
11011110 | 222 |
11011111 | 223 |
11100000 | 224 |
11100001 | 225 |
11100010 | 226 |
11100011 | 227 |
11100100 | 228 |
11100101 | 229 |
11100110 | 230 |
11100111 | 231 |
11101000 | 232 |
11101001 | 233 |
11101010 | 234 |
11101011 | 235 |
11101100 | 236 |
11101101 | 237 |
11101110 | 238 |
11101111 | 239 |
11110000 | 240 |
11110001 | 241 |
11110010 | 242 |
11110011 | 243 |
11110100 | 244 |
11110101 | 245 |
11110110 | 246 |
11110111 | 247 |
11111000 | 248 |
11111001 | 249 |
11111010 | 250 |
11111011 | 251 |
11111100 | 252 |
11111101 | 253 |
11111110 | 254 |
11111111 | 255 |
Related Conversions
Please find the related numeric conversions.
- ASCII Text to Binary
- ASCII Text to Decimal
- ASCII Text to Hex
- Binary to ASCII Text
- Binary to Hex
- Binary to Octal
- Decimal to ASCII Text
- Decimal to Binary
- Decimal to Hex
- Decimal to Octal
- Hex to ASCII Text
- Hex to Binary
- Hex to Decimal
- Hex to Octal
- Octal to Binary
- Octal to Decimal
- Octal to Hex
You may also like:
- Angle conversions
- Degrees to Radians Converter
- Radians to Degrees Converter
- 1 degrees to radians conversion
- 30 degrees to radians conversion
- 45 degrees to radians conversion
- 90 degrees to radians conversion
- 180 degrees to radians conversion
- 270 degrees to radians conversion
- 360 degrees to radians conversion
- Windows ALT Codes
- UTF-8 codes