Octal to Binary Converter
To use octal to binary converter, type any octal value e.g. "76" and click on the Convert button and you will get the binary value of "111110" on right side. Type the numbers in the range from 0 to 7 for the octal values.
Octal to Binary Conversion:
Binary (Without Padding) = 111110
- Octal Numeral System
- Binary Numeral System
- How to Convert Octal to Binary
- How to Convert Fractional Octal to Binary
- Octal to Binary Examples
- FAQs (Octal to Binary Conversion)
- Octal to Binary Table
Octal Numeral System
The octal number system is a positional number system that uses base 8.
This means it uses eight unique digits:
0, 1, 2, 3, 4, 5, 6, 7
8 and 9 are not the part of the octal number system. Every octal digit represents a position with the power of 8.
Example:
Octal number "4375.61" can be written as:
Digit | Position | Power of 8 | Value |
---|---|---|---|
4 | 83 place | 83 = 512 | 4 × 512 = 2048 |
3 | 82 place | 82 = 64 | 3 × 64 = 192 |
7 | 81 place | 81 = 8 | 7 × 8 = 56 |
5 | 80 place | 80 = 1 | 5 × 1 = 5 |
6 | 8-1 place | 8-1 = 0.125 | 6 × 0.125 = 0.75 |
1 | 8-2 place | 8-2 = 0.015625 | 1 × 0.015625 = 0.015625 |
(4375.61)8 = (4 × 83) + (3 × 82) + (7 × 81) + (5 × 80) + (6 × 8-1) + (1 × 8-2) = 2048 + 192 + 56 + 5 + 0.75 + 0.015625 = (2301.765625)10
Binary Numeral System
The binary numeral system uses the number 2 as it base or radix and it consists of only two numbers 0 and 1. The use of these binary numbers was prevalent since ancient times in medieval Golden Age and scientists like Al-Khwarizmi, Avicenna and Jamshid Al-Kashi made significant advances in algebra, mathematics, trignometry and geometry. Since then, the usage of binary numeral system has played a vital role in understanding modern scientific aspects e.g. detecting electrical signals where "0" represents the "OFF" state while "1" represents the "ON" state. Modern computers are completely based on binary numeral system and all the data is interpreted in binary formats. The numbers can be represented in binary format using the powers to the base 2 i.e. 20, 21 etc.
The number "1" is represented in binary as "01" and the number "2" is represented in binary as "10" and every digit in the binary number is called as 1 bit. 1 Byte is equal to 8 bits.
Example:
Binary value (101101.001)2 written as powers of 2:
Digit | Position | Power of 2 | Value |
---|---|---|---|
1 | 25 (Thirty-twos place) | 25 = 32 | 1 × 32 = 32 |
0 | 24 (Sixteens place) | 24 = 16 | 0 × 16 = 0 |
1 | 23 (Eights place) | 23 = 8 | 1 × 8 = 8 |
1 | 22 (Fours place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (Twos place) | 21 = 2 | 0 × 2 = 0 |
1 | 20 (Ones place) | 20 = 1 | 1 × 1 = 1 |
0 | 2-1 (Halves place) | 2-1 = 0.5 | 0 × 0.5 = 0 |
0 | 2-2 (Quarters place) | 2-2 = 0.25 | 0 × 0.25 = 0 |
1 | 2-3 (Eighths place) | 2-3 = 0.125 | 1 × 0.125 = 0.125 |
Decimal Result: 32 + 0 + 8 + 4 + 0 + 1 + 0 + 0 + 0.125 = 45.125
(101101.001)2 = (45.125)10
How to Convert Octal to Binary
To convert octal to binary follow the following steps:
Step-1: Each octal digit maps to exactly 3 bits. Hence separate the octal digits and represent every digit in 3 binary bits. Every bit position refers to the power of 2.
Step-2: Determine which bits needed to be set to high "1" and which bits needed to be low "0" to correctly reflect the octal digit.
Step-3: Combine all the binary bits together to get the final binary value.
How to Convert Fractional Octal to Binary
Please consider the following steps to convert fractional octal value to binary:
Step-1: Get the fractional value from the octal number. For example, for the octal number "37.71", 0.71 is the fractional part.
Step-2: Represent each digit as 3 bits. For example, 7 is represented as 111 and 1 is represented as 001
Step-3: Combine the bits to get the final fractional binary value i.e (0.111001)2
Octal to Binary Examples
Example 1: Convert the octal value "276" to binary.
Group-1 | Group-2 | Group-3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octal: | 2 | 7 | 6 | ||||||||||||||||||
Position: | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||||||||||
4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 |
Group-1 | Group-2 | Group-3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bits: | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
Example 2: Convert the octal value "675" to binary.
Group-1 | Group-2 | Group-3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octal: | 6 | 7 | 5 | ||||||||||||||||||
Position: | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||||||||||
4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 |
Group-1 | Group-2 | Group-3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bits: | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
Example 3: Convert the octal value "3767" to binary.
Group-1 | Group-2 | Group-3 | Group-4 | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octal: | 3 | 7 | 6 | 7 | |||||||||||||||||||||||||
Position: | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | |||||||||||||||||
4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 |
Group-1 | Group-2 | Group-3 | Group-4 | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bits: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Example 4: Convert octal value "173.61" to binary.
Group-1 | Group-2 | Group-3 | Group-4 | Group-5 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octal Digit: | 1 | 7 | 3. | 6 | 1 | |||||||||||||||||||||||||||
Position: | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | |||||||||||||||||
4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 |
Group-1 | Group-2 | Group-3 | Group-4 | Group-5 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bits: | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1. | 1 | 1 | 0 | 0 | 0 | 1 |
Example 5: Convert octal value "7657.573" to binary.
Group-1 | Group-2 | Group-3 | Group-4 | Group-5 | Group-6 | Group-7 | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octal: | 7 | 6 | 5 | 7. | 5 | 7 | 3 | ||||||||||||||||||||||||||||||||||||||||
Position: | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||||||||||||||||||||||||
4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | |||||||||||||||||||||||||||
Bits: | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1. | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
(7657.573)8 = (111 110 101 111 . 101 111 011)2 = (111110101111.101111011)2
Frequently Ask Questions: Octal to Binary Conversion
Q1: Convert octal number (745)8 to binary ?
Since 7 = 111, 4 = 100, and 5 = 101, therefore binary value is (111100101)2
Q2: Why do we start grouping bits in sets of 3 while converting octal to binary?
Because 23 = 8, therefore, grouping binary bits into 3-bit chunks creates values from 0–7 which exactly correspond to a single octal digit. It also ensures that no information or data loss is occurred.
Q3: Add two octal digits 37 and 75 and provide the result in binary ?
(37)8 = (3 × 81) + (7 × 80) = 24 + 7 = (31)10 (decimal)
(75)8 = (7 × 81) + (5 × 80) = 56 + 5 = (61)10 (decimal)
Add the decimal equivalent: 31 + 61 = 92
Convert the decimal result into binary, you can also check Decimal to Binary Converter for the detailed understanding.
92/2 = 46, Remainder = 0
46/2 = 23, Remainder = 0
23/2 = 11, Remainder = 1
11/2 = 5, Remainder = 1
5/2 = 2, Remainder = 1
2/2 = 1, Remainder = 0
1/2 = 0, Remainder = 1
Now combine all the remainders from last value to the first,
Binary value = (1011100)2
Q4: Right shift the octal value "7765" by 5 bits and do padding on the left with 1, what is the final result in binary?
As each octal digit can be represented by 3 bits:
7 = 111, 7 = 111, 6 = 110, 5 = 101, Therefore binary value is (111111110101)2
Right shift by 5 bits and pad 1s on the left side:
(111111110101)2 >> 5 = (111111111111)2
The octal value of the above shifted value is 7777.
Q5: How to convert octal value 17.71 to binary?
Convert all octal digits to 3 bits binary and combine them:
1 = 001, 7 = 111, therefore, binary value is:
(001111.111001)2 = (1111.111001)2
Octal to Binary Conversion Table
Octal | Binary |
---|---|
1 | 00000001 |
2 | 00000010 |
3 | 00000011 |
4 | 00000100 |
5 | 00000101 |
6 | 00000110 |
7 | 00000111 |
10 | 00001000 |
11 | 00001001 |
12 | 00001010 |
13 | 00001011 |
14 | 00001100 |
15 | 00001101 |
16 | 00001110 |
17 | 00001111 |
20 | 00010000 |
21 | 00010001 |
22 | 00010010 |
23 | 00010011 |
24 | 00010100 |
25 | 00010101 |
26 | 00010110 |
27 | 00010111 |
30 | 00011000 |
31 | 00011001 |
32 | 00011010 |
33 | 00011011 |
34 | 00011100 |
35 | 00011101 |
36 | 00011110 |
37 | 00011111 |
40 | 00100000 |
41 | 00100001 |
42 | 00100010 |
43 | 00100011 |
44 | 00100100 |
45 | 00100101 |
46 | 00100110 |
47 | 00100111 |
50 | 00101000 |
51 | 00101001 |
52 | 00101010 |
53 | 00101011 |
54 | 00101100 |
55 | 00101101 |
56 | 00101110 |
57 | 00101111 |
60 | 00110000 |
61 | 00110001 |
62 | 00110010 |
63 | 00110011 |
64 | 00110100 |
65 | 00110101 |
66 | 00110110 |
67 | 00110111 |
70 | 00111000 |
71 | 00111001 |
72 | 00111010 |
73 | 00111011 |
74 | 00111100 |
75 | 00111101 |
76 | 00111110 |
77 | 00111111 |
100 | 01000000 |
Octal | Binary |
---|---|
101 | 01000001 |
102 | 01000010 |
103 | 01000011 |
104 | 01000100 |
105 | 01000101 |
106 | 01000110 |
107 | 01000111 |
110 | 01001000 |
111 | 01001001 |
112 | 01001010 |
113 | 01001011 |
114 | 01001100 |
115 | 01001101 |
116 | 01001110 |
117 | 01001111 |
120 | 01010000 |
121 | 01010001 |
122 | 01010010 |
123 | 01010011 |
124 | 01010100 |
125 | 01010101 |
126 | 01010110 |
127 | 01010111 |
130 | 01011000 |
131 | 01011001 |
132 | 01011010 |
133 | 01011011 |
134 | 01011100 |
135 | 01011101 |
136 | 01011110 |
137 | 01011111 |
140 | 01100000 |
141 | 01100001 |
142 | 01100010 |
143 | 01100011 |
144 | 01100100 |
145 | 01100101 |
146 | 01100110 |
147 | 01100111 |
150 | 01101000 |
151 | 01101001 |
152 | 01101010 |
153 | 01101011 |
154 | 01101100 |
155 | 01101101 |
156 | 01101110 |
157 | 01101111 |
160 | 01110000 |
161 | 01110001 |
162 | 01110010 |
163 | 01110011 |
164 | 01110100 |
165 | 01110101 |
166 | 01110110 |
167 | 01110111 |
170 | 01111000 |
171 | 01111001 |
172 | 01111010 |
173 | 01111011 |
174 | 01111100 |
175 | 01111101 |
176 | 01111110 |
177 | 01111111 |
200 | 10000000 |
Octal | Binary |
---|---|
201 | 10000001 |
202 | 10000010 |
203 | 10000011 |
204 | 10000100 |
205 | 10000101 |
206 | 10000110 |
207 | 10000111 |
210 | 10001000 |
211 | 10001001 |
212 | 10001010 |
213 | 10001011 |
214 | 10001100 |
215 | 10001101 |
216 | 10001110 |
217 | 10001111 |
220 | 10010000 |
221 | 10010001 |
222 | 10010010 |
223 | 10010011 |
224 | 10010100 |
225 | 10010101 |
226 | 10010110 |
227 | 10010111 |
230 | 10011000 |
231 | 10011001 |
232 | 10011010 |
233 | 10011011 |
234 | 10011100 |
235 | 10011101 |
236 | 10011110 |
237 | 10011111 |
240 | 10100000 |
241 | 10100001 |
242 | 10100010 |
243 | 10100011 |
244 | 10100100 |
245 | 10100101 |
246 | 10100110 |
247 | 10100111 |
250 | 10101000 |
251 | 10101001 |
252 | 10101010 |
253 | 10101011 |
254 | 10101100 |
255 | 10101101 |
256 | 10101110 |
257 | 10101111 |
260 | 10110000 |
261 | 10110001 |
262 | 10110010 |
263 | 10110011 |
264 | 10110100 |
265 | 10110101 |
266 | 10110110 |
267 | 10110111 |
270 | 10111000 |
271 | 10111001 |
272 | 10111010 |
273 | 10111011 |
274 | 10111100 |
275 | 10111101 |
276 | 10111110 |
277 | 10111111 |
300 | 11000000 |
Octal | Binary |
---|---|
301 | 11000001 |
302 | 11000010 |
303 | 11000011 |
304 | 11000100 |
305 | 11000101 |
306 | 11000110 |
307 | 11000111 |
310 | 11001000 |
311 | 11001001 |
312 | 11001010 |
313 | 11001011 |
314 | 11001100 |
315 | 11001101 |
316 | 11001110 |
317 | 11001111 |
320 | 11010000 |
321 | 11010001 |
322 | 11010010 |
323 | 11010011 |
324 | 11010100 |
325 | 11010101 |
326 | 11010110 |
327 | 11010111 |
330 | 11011000 |
331 | 11011001 |
332 | 11011010 |
333 | 11011011 |
334 | 11011100 |
335 | 11011101 |
336 | 11011110 |
337 | 11011111 |
340 | 11100000 |
341 | 11100001 |
342 | 11100010 |
343 | 11100011 |
344 | 11100100 |
345 | 11100101 |
346 | 11100110 |
347 | 11100111 |
350 | 11101000 |
351 | 11101001 |
352 | 11101010 |
353 | 11101011 |
354 | 11101100 |
355 | 11101101 |
356 | 11101110 |
357 | 11101111 |
360 | 11110000 |
361 | 11110001 |
362 | 11110010 |
363 | 11110011 |
364 | 11110100 |
365 | 11110101 |
366 | 11110110 |
367 | 11110111 |
370 | 11111000 |
371 | 11111001 |
372 | 11111010 |
373 | 11111011 |
374 | 11111100 |
375 | 11111101 |
376 | 11111110 |
377 | 11111111 |
Related Conversions
Please find the related numeric conversions.