Home Conversion Number Octal to Binary

Octal to Binary Converter

To use octal to binary converter, type any octal value e.g. "76" and click on the Convert button and you will get the binary value of "111110" on right side. Type the numbers in the range from 0 to 7 for the octal values.

Octal to Binary Conversion:

Binary (With Padding)    = 111110
Binary (Without Padding) = 111110

Octal Numeral System

The octal number system is a positional number system that uses base 8.

This means it uses eight unique digits:

0, 1, 2, 3, 4, 5, 6, 7

8 and 9 are not the part of the octal number system. Every octal digit represents a position with the power of 8.

Example:

Octal number "4375.61" can be written as:

Digit Position Power of 8 Value
4 83 place 83 = 512 4 × 512 = 2048
3 82 place 82 = 64 3 × 64 = 192
7 81 place 81 = 8 7 × 8 = 56
5 80 place 80 = 1 5 × 1 = 5
6 8-1 place 8-1 = 0.125 6 × 0.125 = 0.75
1 8-2 place 8-2 = 0.015625 1 × 0.015625 = 0.015625

(4375.61)8 = (4 × 83) + (3 × 82) + (7 × 81) + (5 × 80) + (6 × 8-1) + (1 × 8-2) = 2048 + 192 + 56 + 5 + 0.75 + 0.015625 = (2301.765625)10

Binary Numeral System

The binary numeral system uses the number 2 as it base or radix and it consists of only two numbers 0 and 1. The use of these binary numbers was prevalent since ancient times in medieval Golden Age and scientists like Al-Khwarizmi, Avicenna and Jamshid Al-Kashi made significant advances in algebra, mathematics, trignometry and geometry. Since then, the usage of binary numeral system has played a vital role in understanding modern scientific aspects e.g. detecting electrical signals where "0" represents the "OFF" state while "1" represents the "ON" state. Modern computers are completely based on binary numeral system and all the data is interpreted in binary formats. The numbers can be represented in binary format using the powers to the base 2 i.e. 20, 21 etc.

The number "1" is represented in binary as "01" and the number "2" is represented in binary as "10" and every digit in the binary number is called as 1 bit. 1 Byte is equal to 8 bits.

Example:

Binary value (101101.001)2 written as powers of 2:

Digit Position Power of 2 Value
1 25 (Thirty-twos place) 25 = 32 1 × 32 = 32
0 24 (Sixteens place) 24 = 16 0 × 16 = 0
1 23 (Eights place) 23 = 8 1 × 8 = 8
1 22 (Fours place) 22 = 4 1 × 4 = 4
0 21 (Twos place) 21 = 2 0 × 2 = 0
1 20 (Ones place) 20 = 1 1 × 1 = 1
0 2-1 (Halves place) 2-1 = 0.5 0 × 0.5 = 0
0 2-2 (Quarters place) 2-2 = 0.25 0 × 0.25 = 0
1 2-3 (Eighths place) 2-3 = 0.125 1 × 0.125 = 0.125

Decimal Result: 32 + 0 + 8 + 4 + 0 + 1 + 0 + 0 + 0.125 = 45.125

(101101.001)2 = (45.125)10

How to Convert Octal to Binary

To convert octal to binary follow the following steps:

How to Convert Fractional Octal to Binary

Please consider the following steps to convert fractional octal value to binary:

Octal to Binary Examples

Example 1: Convert the octal value "276" to binary.

  • Map every octal digit to 3 bits. Every bit position refers to the power of 2. As described above, the righmost bit refers to the (20 == 1) position, the next one to the left refers to (21 == 2) position and so on.
  • Group-1 Group-2 Group-3
    Octal: 2 7 6

    Position: 22 21 20 22 21 20 22 21 20
    4 2 1 4 2 1 4 2 1
  • Set bits to 1 or 0 to correctly represent the octal digit.
  • Group-1 Group-2 Group-3
    Bits: 0 1 0 1 1 1 1 1 0
  • Combine all the bits together to get the final binary value:
  • (276)8 = (010111110)2 = (10111110)2
  • Example 2: Convert the octal value "675" to binary.

  • Map every octal digit to 3 bits.
  • Group-1 Group-2 Group-3
    Octal: 6 7 5

    Position: 22 21 20 22 21 20 22 21 20
    4 2 1 4 2 1 4 2 1
  • Set bits to 1 or 0 to correctly represent the octal digit.
  • Group-1 Group-2 Group-3
    Bits: 1 1 0 1 1 1 1 0 1
  • Final binary value is:
  • (675)8 = (110111101)2
  • Example 3: Convert the octal value "3767" to binary.

  • Map every octal digit to 3 bits.
  • Group-1 Group-2 Group-3 Group-4
    Octal: 3 7 6 7

    Position: 22 21 20 22 21 20 22 21 20 22 21 20
    421 421 421 421
  • Set bits to 1 or 0 to correctly represent each octal digit (MSB to LSB: 3, 7, 6, 7).
  • Group-1 Group-2 Group-3 Group-4
    Bits: 11 111 110 111
  • Binary value is:
  • (3767)8 = (011111110111)2 = (11111110111)2
  • Example 4: Convert octal value "173.61" to binary.

  • Separate the octal digits and represent them 3 bits.
  • Group-1 Group-2 Group-3 Group-4 Group-5
    Octal Digit: 1 7 3. 6 1

    Position: 22 21 20 22 21 20 22 21 20 22 21 20 22 21 20
    4 2 1 4 2 1 4 2 1 4 2 1 4 2 1
  • Determine which bits needed to be high "1" and which bits needed to be low "0".
  • Group-1 Group-2 Group-3 Group-4 Group-5
    Bits: 0 0 1 1 1 1 0 1 1. 1 1 0 0 0 1
  • Binary value:
  • (173.61)8 = (001111011.110001)2 = (1111011.110001)2
  • Example 5: Convert octal value "7657.573" to binary.

  • Step 1:Map every octal digit to 3 bits.
  • Group-1      Group-2      Group-3      Group-4      Group-5      Group-6      Group-7
    Octal: 7   6 5 7. 5 7 3
     
    Position: 22 21 20 22 21 20 22 21 20 22 21 20 22 21 20 22 21 20 22 21 20
    421 421 421 421 421 421 421
     
    Bits: 111 110 101 111. 101 111 011
  • Binary value is:
  • (7657.573)8 = (111 110 101 111 . 101 111 011)2 = (111110101111.101111011)2

    Frequently Ask Questions: Octal to Binary Conversion

    Q1: Convert octal number (745)8 to binary ?

    Since 7 = 111, 4 = 100, and 5 = 101, therefore binary value is (111100101)2

    Q2: Why do we start grouping bits in sets of 3 while converting octal to binary?

    Because 23 = 8, therefore, grouping binary bits into 3-bit chunks creates values from 0–7 which exactly correspond to a single octal digit. It also ensures that no information or data loss is occurred.

    Q3: Add two octal digits 37 and 75 and provide the result in binary ?

    (37)8 = (3 × 81) + (7 × 80) = 24 + 7 = (31)10 (decimal)

    (75)8 = (7 × 81) + (5 × 80) = 56 + 5 = (61)10 (decimal)

    Add the decimal equivalent: 31 + 61 = 92

    Now combine all the remainders from last value to the first,

    Binary value = (1011100)2

    Q4: Right shift the octal value "7765" by 5 bits and do padding on the left with 1, what is the final result in binary?

    As each octal digit can be represented by 3 bits:

    7 = 111, 7 = 111, 6 = 110, 5 = 101, Therefore binary value is (111111110101)2

    Right shift by 5 bits and pad 1s on the left side:

    (111111110101)2 >> 5 = (111111111111)2

    The octal value of the above shifted value is 7777.

    Q5: How to convert octal value 17.71 to binary?

    Convert all octal digits to 3 bits binary and combine them:

    1 = 001, 7 = 111, therefore, binary value is:

    (001111.111001)2 = (1111.111001)2

    Octal to Binary Conversion Table

    OctalBinary
    100000001
    200000010
    300000011
    400000100
    500000101
    600000110
    700000111
    1000001000
    1100001001
    1200001010
    1300001011
    1400001100
    1500001101
    1600001110
    1700001111
    2000010000
    2100010001
    2200010010
    2300010011
    2400010100
    2500010101
    2600010110
    2700010111
    3000011000
    3100011001
    3200011010
    3300011011
    3400011100
    3500011101
    3600011110
    3700011111
    4000100000
    4100100001
    4200100010
    4300100011
    4400100100
    4500100101
    4600100110
    4700100111
    5000101000
    5100101001
    5200101010
    5300101011
    5400101100
    5500101101
    5600101110
    5700101111
    6000110000
    6100110001
    6200110010
    6300110011
    6400110100
    6500110101
    6600110110
    6700110111
    7000111000
    7100111001
    7200111010
    7300111011
    7400111100
    7500111101
    7600111110
    7700111111
    10001000000
    OctalBinary
    10101000001
    10201000010
    10301000011
    10401000100
    10501000101
    10601000110
    10701000111
    11001001000
    11101001001
    11201001010
    11301001011
    11401001100
    11501001101
    11601001110
    11701001111
    12001010000
    12101010001
    12201010010
    12301010011
    12401010100
    12501010101
    12601010110
    12701010111
    13001011000
    13101011001
    13201011010
    13301011011
    13401011100
    13501011101
    13601011110
    13701011111
    14001100000
    14101100001
    14201100010
    14301100011
    14401100100
    14501100101
    14601100110
    14701100111
    15001101000
    15101101001
    15201101010
    15301101011
    15401101100
    15501101101
    15601101110
    15701101111
    16001110000
    16101110001
    16201110010
    16301110011
    16401110100
    16501110101
    16601110110
    16701110111
    17001111000
    17101111001
    17201111010
    17301111011
    17401111100
    17501111101
    17601111110
    17701111111
    20010000000
    OctalBinary
    20110000001
    20210000010
    20310000011
    20410000100
    20510000101
    20610000110
    20710000111
    21010001000
    21110001001
    21210001010
    21310001011
    21410001100
    21510001101
    21610001110
    21710001111
    22010010000
    22110010001
    22210010010
    22310010011
    22410010100
    22510010101
    22610010110
    22710010111
    23010011000
    23110011001
    23210011010
    23310011011
    23410011100
    23510011101
    23610011110
    23710011111
    24010100000
    24110100001
    24210100010
    24310100011
    24410100100
    24510100101
    24610100110
    24710100111
    25010101000
    25110101001
    25210101010
    25310101011
    25410101100
    25510101101
    25610101110
    25710101111
    26010110000
    26110110001
    26210110010
    26310110011
    26410110100
    26510110101
    26610110110
    26710110111
    27010111000
    27110111001
    27210111010
    27310111011
    27410111100
    27510111101
    27610111110
    27710111111
    30011000000
    OctalBinary
    30111000001
    30211000010
    30311000011
    30411000100
    30511000101
    30611000110
    30711000111
    31011001000
    31111001001
    31211001010
    31311001011
    31411001100
    31511001101
    31611001110
    31711001111
    32011010000
    32111010001
    32211010010
    32311010011
    32411010100
    32511010101
    32611010110
    32711010111
    33011011000
    33111011001
    33211011010
    33311011011
    33411011100
    33511011101
    33611011110
    33711011111
    34011100000
    34111100001
    34211100010
    34311100011
    34411100100
    34511100101
    34611100110
    34711100111
    35011101000
    35111101001
    35211101010
    35311101011
    35411101100
    35511101101
    35611101110
    35711101111
    36011110000
    36111110001
    36211110010
    36311110011
    36411110100
    36511110101
    36611110110
    36711110111
    37011111000
    37111111001
    37211111010
    37311111011
    37411111100
    37511111101
    37611111110
    37711111111

    by Wasim Khan and it was last modified on

    Related Conversions

    Please find the related numeric conversions.