Home Conversion Number Octal to Decimal

Octal to Decimal Converter

To use octal to decimal converter, type any octal value e.g. "176" and click on the Convert button and you will get the decimal value of "126" on right side. The detailed explanation of how to convert the octal number to decimal is given below.

Octal to Decimal Conversion:

Decimal = 126

Octal Numeral System

The octal number system is a type of positional numeral system that works on base 8, meaning it uses eight distinct digits to represent numbers.

The valid digits in the octal system are:

0, 1, 2, 3, 4, 5, 6, 7

Unlike the decimal system, the digits 8 and 9 do not exist in the octal format. Each position in an octal number carries a value that is calculated using powers of 8. For example, the rightmost position represents 80, the next one to the left represents 81, and so on.

This makes the octal system especially useful in computer science, digital electronics, and low-level programming, where data is often grouped in multiples of 3 binary bits.

Example:

Octal number "7654.73" expressed as powers of 8:

Digit Position Power of 8 Value
7 83 place 83 = 512 7 × 512 = 3584
6 82 place 82 = 64 6 × 64 = 384
5 81 place 81 = 8 5 × 8 = 40
4 80 place 80 = 1 4 × 1 = 4
7 8-1 place 8-1 = 0.125 7 × 0.125 = 0.875
3 8-2 place 8-2 = 0.015625 3 × 0.015625 = 0.046875

(7654.73)8 = (7 × 83) + (6 × 82) + (5 × 81) + (4 × 80) + (7 × 8-1) + (3 × 8-2) = 3584 + 384 + 40 + 4 + 0.875 + 0.046875 = (4012.921875)10

Decimal Numeral System

The decimal number system is a positional numeral system with a base of 10.

It uses ten unique digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

When these digits are combined, they form any number. The value of each digit depends on its position in the number, and every position is represented as a power of 10.

Example:

Decimal number "8975.987" can be broken down as power of 10:

Digit Position Power of 10 Value
8 103 (Thousands place) 103 = 1000 8 × 1000 = 8000
9 102 (Hundreds place) 102 = 100 9 × 100 = 900
7 101 (Tens place) 101 = 10 7 × 10 = 70
5 100 (Ones place) 100 = 1 5 × 1 = 5
9 10-1 (Tenths place) 10-1 = 0.1 9 × 0.1 = 0.9
8 10-2 (Hundredths place) 10-2 = 0.01 8 × 0.01 = 0.08
7 10-3 (Thousandths place) 10-3 = 0.001 7 × 0.001 = 0.007

Total = (8 × 103) + (9 × 102) + (7 × 101) + (5 × 100) + (9 × 10-1) + (8 × 10-2) + (7 × 10-3) = 8000 + 900 + 70 + 5 + 0.9 + 0.08 + 0.007 = 8975.987

How to Convert Octal to Decimal

Octal numbers are the base-8 numbers and every octal digit can be represented as powers to the base-8. For example, every digit of the octal number "237" represent the power to the base-8.

Considering the above scenario any octal value can be converted to decimal by using three steps below. Octal digits (0 to 7) represents the same decimal values from (0 to 7).

How to Convert Fractional Octal to Decimal

We can convert the fractional octal value using the following steps:

Octal to Decimal Examples

Example 1: Convert octal value "741" to decimal.

  • Multiply octal digits with their respective positions.
  •   Digit-1 Digit-2 Digit-3
    7 4 1
     
    Position: 82 81 80
    64 8 1
     
    Multiply:   7 × 64   4 × 8   1 × 1
    = 448 = 32 = 1
  • Sum all the products to get final decimal value:
  • (741)8 = (448 + 32 + 1) = (481)10
  • Example 2: Convert octal value "7757" to decimal.

  • Multiply octal digits with their respective positions.
  •   Digit-1 Digit-2 Digit-3 Digit-4
    7 7 5 7
     
    Position: 83 82 81 80
    512 64 8 1
     
    Multiply:   7 × 512    7 × 64    5 × 8    7 × 1
    = 3584 = 448 = 40 = 7
  • Final decimal value is:
  • (7757)8 = (3584 + 448 + 40 + 7) = (4079)10
  • Example 3: Convert octal value "6735" to decimal.

  • Multiply octal digits with their respective positions.
  •   Digit-1 Digit-2 Digit-3 Digit-4
    6 7 3 5
     
    Position: 83 82 81 80
    512 64 8 1
     
    Multiply:   6 × 512   7 × 64   3 × 8   5 × 1
    = 3072 = 448 = 24 = 5
  • Decimal value is:
  • (6735)8 = (3072 + 448 + 24 + 5) = (3549)10
  • Example 4: Convert octal value "2775.77" to decimal.

  • Multiply octal digits with their respective positions (integer and fractional parts included).
  •   Digit-1 Digit-2 Digit-3 Digit-4 Digit-5 Digit-6
    2 7 7 5. 7 7
     
    Position: 83 82 81 80 8-1 8-2
    512 64 8 1 1/8 1/64
     
    Multiply: 2 × 512 7 × 64 7 × 8 5 × 1. 7 × (1/8) 7 × (1/64)
    = 1024 = 448 = 56 = 5. = 0.875 = 0.109375
  • Decimal value:
  • (2775.77)8 = (1024 + 448 + 56 + 5 + 0.875 + 0.109375) = (1533.984375)10
  • Example 5: Convert octal value "3673.56" to decimal.

  • Multiply octal digits with their respective positions (integer and fractional parts included).
  •   Digit-1 Digit-2 Digit-3 Digit-4 Digit-5 Digit-6
    3 6 7 3. 5 6
     
    Position: 83 82 81 80 8-1 8-2
    512 64 8 1 1/8 1/64
     
    Multiply: 3 × 512 6 × 64 7 × 8 3 × 1. 5 × (1/8) 6 × (1/64)
    = 1536 = 384 = 56 = 3. = 0.625 = 0.09375
  • Decimal value:
  • (3673.56)8 = (1536 + 384 + 56 + 3 + 0.625 + 0.09375) = (1979.71875)10
  • Frequently Ask Questions: Octal to Decimal Conversion

    Q1: Assume that embedded controller register address is signed octal value 601, what is the decimal equivalent?

    As each octal digit can be interpreted with 3 bits, 6 = 110, 0 = 000, 1 = 001, in binary (110000001)2

    In sign-magnitude, the MSB is a sign-bit (leftmost most). MSB = 1 which means the number is negative, now convert the remaining bits to decimal:

    (10000001)2 = (129)10. As it is signed value, so decimal value = -129

    For the signed values, always check the MSB for sign, and take the magnitude value from the remaining bits.

    Q2: Convert (7635.47)8 to a decimal value?

    Powers of 8 are:

    Multiply all the octal digits with their position and add all the products to get the final decimal value:

    Decimal value: (7 × 83) + (6 × 82) + (3 × 81) + (5 × 80) + (4 × 8-1) + (7 × 8-2) = (7 × 512) + (6 × 64) + (3 × 8) + (5 × 1) + (4 × 0.125) + (7 × 0.015625) = 3584 + 384 + 24 + 5 + 0.5 + 0.109375 = (3997.609375)10

    Q3: Convert (1.1)8 to a decimal value?

    (1.1)8 = (1 × 80) + (1 × 8-1) = 1 + 0.125 = (1.125)10 (in decimal)

    Q4: A 9-bit signed octal value is given as (377)8, how to convert it to decimal?

    Let's check the MSB to check whether the number is positive or negative, 3 = 011, 7 = 111, 7 = 111, binary is (011111111)2

    Decimal value is: 255

    Q5: Conside that Unix file permission value is octal 755, convert it to decimal?

    Unix permission 755 represents read/write/execute per owner/group/other, let's convert it to decimal:

    (755)8 = (7 × 82) + (5 × 81) + (5 × 80) = (7 × 64) + (5 × 8) + (5 × 1) = 448 + 40 + 5 = 493 in decimal.

    Q6: Can octal numbers be negative and how to convert them to decimal?

    Yes, octal numbers can have a negative sign and you can simply apply the negative sign after converting it to decimal:

    (-127)8 = -(1 × 82) + (2 × 81) + (7 × 80) = -(64 + 16 + 7) = -87 in decimal.

    Octal to Decimal Conversion Table

    OctalDecimal
    11
    22
    33
    44
    55
    66
    77
    108
    119
    1210
    1311
    1412
    1513
    1614
    1715
    2016
    2117
    2218
    2319
    2420
    2521
    2622
    2723
    3024
    3125
    3226
    3327
    3428
    3529
    3630
    3731
    4032
    4133
    4234
    4335
    4436
    4537
    4638
    4739
    5040
    5141
    5242
    5343
    5444
    5545
    5646
    5747
    6048
    6149
    6250
    6351
    6452
    6553
    6654
    6755
    7056
    7157
    7258
    7359
    7460
    7561
    7662
    7763
    10064
    OctalDecimal
    10165
    10266
    10367
    10468
    10569
    10670
    10771
    11072
    11173
    11274
    11375
    11476
    11577
    11678
    11779
    12080
    12181
    12282
    12383
    12484
    12585
    12686
    12787
    13088
    13189
    13290
    13391
    13492
    13593
    13694
    13795
    14096
    14197
    14298
    14399
    144100
    145101
    146102
    147103
    150104
    151105
    152106
    153107
    154108
    155109
    156110
    157111
    160112
    161113
    162114
    163115
    164116
    165117
    166118
    167119
    170120
    171121
    172122
    173123
    174124
    175125
    176126
    177127
    200128
    OctalDecimal
    201129
    202130
    203131
    204132
    205133
    206134
    207135
    210136
    211137
    212138
    213139
    214140
    215141
    216142
    217143
    220144
    221145
    222146
    223147
    224148
    225149
    226150
    227151
    230152
    231153
    232154
    233155
    234156
    235157
    236158
    237159
    240160
    241161
    242162
    243163
    244164
    245165
    246166
    247167
    250168
    251169
    252170
    253171
    254172
    255173
    256174
    257175
    260176
    261177
    262178
    263179
    264180
    265181
    266182
    267183
    270184
    271185
    272186
    273187
    274188
    275189
    276190
    277191
    300192
    OctalDecimal
    301193
    302194
    303195
    304196
    305197
    306198
    307199
    310200
    311201
    312202
    313203
    314204
    315205
    316206
    317207
    320208
    321209
    322210
    323211
    324212
    325213
    326214
    327215
    330216
    331217
    332218
    333219
    334220
    335221
    336222
    337223
    340224
    341225
    342226
    343227
    344228
    345229
    346230
    347231
    350232
    351233
    352234
    353235
    354236
    355237
    356238
    357239
    360240
    361241
    362242
    363243
    364244
    365245
    366246
    367247
    370248
    371249
    372250
    373251
    374252
    375253
    376254
    377255

    by Wasim Khan and it was last modified on

    Related Conversions

    Please find the related numeric conversions.