Decimal to Hex Converter
To use decimal to hexadecimal converter, type a decimal value e.g. "120" and click on the Convert button and you will get the hexadecimal value of "78" on the right hand side.
Decimal to Hex Conversion:
- Decimal Numeral System
- Hexadecimal Numeral System
- How to Convert Decimal to Hex
- How to Convert Fractional Decimal to Hex
- Decimal to Hex Examples
- FAQs (Decimal to Hex Conversion)
- Decimal to Hex Table
Decimal Numeral System
Decimal numbers is a base-10 number system built from ten characters: 0 to 9. The system assigns value through place, whole-number positions represent powers of 10 that increase to the left (...., 102, 101, 100) and fractional positions represent negative powers that extend to the right (10-1, 10-2, 10-3, ....). This way, numbers of nearly any magnitude, large or small, can be written compactly.
Example:
Let's assume a decimal value "5743.19",
Digit | Position | Power of 10 | Value |
---|---|---|---|
5 | 103 (Thousands place) | 103 = 1000 | 5 × 1000 = 5000 |
7 | 102 (Hundreds place) | 102 = 100 | 7 × 100 = 700 |
4 | 101 (Tens place) | 101 = 10 | 4 × 10 = 40 |
3 | 100 (Ones place) | 100 = 1 | 3 × 1 = 3 |
1 | 10-1 (Tenths place) | 10-1 = 0.1 | 1 × 0.1 = 0.1 |
9 | 10-2 (Hundredths place) | 10-2 = 0.01 | 9 × 0.01 = 0.09 |
Total = (5 × 103) + (7 × 102) + (4 × 101) + (3 × 100) + (1 × 10-1) + (9 × 10-2) = 5000 + 700 + 40 + 3 + 0.1 + 0.09 = 5743.19
Hexadecimal Numeral System (Hex Numbers)
Hexadecimal numbers, often called hex numbers, are based on the number 16. The hexadecimal system, or base-16 numeral system, employs 16 distinct symbols: the decimal digits "0" through "9" and the first six letters of the English alphabet, "A" to "F." These letters correspond to the decimal values 10 through 15. Hex numbers are widely utilized in mathematics, computer science, and various scientific disciplines. Every hex digit represents a power of 16. The rightmost hex digit corresponds to the position 160 and the next left digit represents 161 and so on. For fractional hex values, after the hexadecimal point, the hex positions are incremented in negative powers to the right side e.g. 16-1, 16-2 and so on
Example:
Hex value "6AF4" can be written as,
Digit | Position | Power of 16 | Value |
---|---|---|---|
6 | 163 (4096's place) | 163 = 4096 | 6 × 4096 = 24576 |
A (10) | 162 (256's place) | 162 = 256 | 10 × 256 = 2560 |
F (15) | 161 (16's place) | 161 = 16 | 15 × 16 = 240 |
4 | 160 (1's place) | 160 = 1 | 4 × 1 = 4 |
Therefore (6AF4)16 = (6 × 163) + (10 × 162) + (15 × 161) + (4 × 160) = 24576 + 2560 + 240 + 4 = (27380)10
How to Convert Decimal to Hex
To convert decimal to hexadecimal value, division and remainder algorithm is used where the decimal value is repeatedly divided by radix 16 to fetch the hexadecimal results. Consider the following steps convert decimal to hex. Follow the following steps:
-
Step-1: Given the decimal number less than 16 i.e. (0 to 15), the hex values are (0 to F) as shown above.
-
Step-2: Given the decimal number greater than or equal to 16, then repeatedly divide the quotient by 16 until the quotient value is equal to 0.
-
Step-3: Combine together all the remainder values in hex starting from last to the first one. The final value is the hexadecimal number.
How to Convert Fractional Decimal Part to Hex
The fractional decimal value can be converted to hex using the following steps:
Step-1: Take only the fractional part of the decimal number. For example, if the decimal number is 12.75, use 0.75.
Step-2: Multiply the fraction by 16. The integer part of the result will be the first digit after the hexadecimal point. Example: 0.75 × 16 = 12. The integer part 12 corresponds to hex digit "C" at the position 16-1.
Step-3: Take the fractional remainder and repeat Step-2 until the fractional remainder is 0. Example: 0.75 × 16 = 12.00, Here remainder = 0, so the process stops here, otherwise continue with Step-2.
Step-4: Continue multiplying the fractional remainders by 16 until either the remainder becomes 0 or you reach the required precision. The subsequent integer values gives you the next hex digit at the positions: 16-1, 16-2, 16-3, ...
Decimal to Hex Examples
Example 1: Convert (47)10 decimal value to hex value.
Division by 16 | Quotient | Remainder (Decimal) | Remainder (Hex) | Digit Position |
---|---|---|---|---|
47/16 | 2 | 15 | F | 160 |
2/16 | 0 | 2 | 2 | 161 |
Example 2: Convert (571)10 decimal value to hex value.
Division by 16 | Quotient | Remainder (Decimal) | Remainder (Hex) | Digit Position |
---|---|---|---|---|
571/16 | 35 | 11 | B | 160 |
35/16 | 2 | 3 | 3 | 161 |
2/16 | 0 | 2 | 2 | 162 |
Example 3: Convert (97898)10 to hex.
Division by 16 | Quotient | Remainder (Decimal) | Remainder (Hex) | Digit Position |
---|---|---|---|---|
97898/16 | 6118 | 10 | A | 160 |
6118/16 | 382 | 6 | 6 | 161 |
382/16 | 23 | 14 | E | 162 |
23/16 | 1 | 7 | 7 | 163 |
1/16 | 0 | 1 | 1 | 164 |
Example 4: Convert (97585.375)10 to hex.
Division by 16 | Quotient | Remainder (Decimal) | Remainder (Hex) | Digit Position |
---|---|---|---|---|
97585/16 | 6099 | 1 | 1 | 160 |
6099/16 | 381 | 3 | 3 | 161 |
381/16 | 23 | 13 | D | 162 |
23/16 | 1 | 7 | 7 | 163 |
1/16 | 0 | 1 | 1 | 164 |
Multiplication by 16 | Product | Integer Part (Decimal) | Integer Part (Hex) | Fractional Remainder | Digit Position |
---|---|---|---|---|---|
0.375 × 16 | 6.0 | 6 | 6 | 0 | 16–1 |
Example 4: Convert (31321.64453125)10 to hex.
Division by 16 | Quotient | Remainder (Decimal) | Remainder (Hex) | Digit Position |
---|---|---|---|---|
31321/16 | 1957 | 9 | 9 | 160 |
1957/16 | 122 | 5 | 5 | 161 |
122/16 | 7 | 10 | A | 162 |
7/16 | 0 | 7 | 7 | 163 |
Multiplication by 16 | Product | Integer Part (Decimal) | Integer Part (Hex) | Fractional Remainder | Digit Position |
---|---|---|---|---|---|
0.64453125 × 16 | 10.3125 | 10 | A | 0.3125 | 16–1 |
0.3125 × 16 | 5.0 | 5 | 5 | 0 | 16–2 |
Frequently Ask Questions: Decimal to Hex Conversion
Q1: Which decimal fractions can be exactly represented in hexadecimal?
Only fractions that are multiples of powers of 1/16 can be precisely converted to hex values. For example, assume the fraction is 1/16, take its multiples:
8/16 = (0.5)10 = (0.8)16
4/16 = 1/4 = (0.25)10 = (0.4)16
Now if we increase the power of base 16 to 2 in the denominator i.e. 1/162.Now takes its multiples and convert to hex:
3/162 = 3/256 = (0.01171875)10 = (0.03)16
11/162 = 11/256 = (0.04296875)10 = (0.0B)16
Q2: Convert -45 decimal to 8-bit hexadecimal using two’s complement?
(45)10 = (2D)16 = (0010 1101)2
Take two's complement (Invert all bits + Add 1):
Inverted Bits: (1101 0010)2
Add 1: (1101 0011)2 = (D3)16
Therefore using 2's complement (-45)10 = (D3)16
Q3: How to Convert decimal fraction 0.5625 to hex?
Multiply the fraction 0.5625 × 16 = 9, Therefore integer = 9, remainder = 0. This value "9" is based at position 16-1, (0.5625)10 = (0.9)16
Q4: Why do we convert decimal values to hex?
Hexadecimal values more compact, human-readable, and directly compatible with binary. It is widely used in computing, electronics, networking, and programming. Memory addresses, color codes, MAC addresses etc. are often represented in hex values.
Q5: Convert 65535 to hexadecimal?
65535 / 16 = 4095, Remainder is 15 (F)
4095 / 16 = 255, Remainder is 15 (F)
255 / 16 = 15, Remainder is 15 (F)
15 / 16 = 0, Remainder is 15 (F)
Hexadecimal: (65535)10 = (FFFF)16
Decimal to Hexadecimal Table
Decimal | Hexadecimal |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
10 | A |
11 | B |
12 | C |
13 | D |
14 | E |
15 | F |
16 | 10 |
17 | 11 |
18 | 12 |
19 | 13 |
20 | 14 |
21 | 15 |
22 | 16 |
23 | 17 |
24 | 18 |
25 | 19 |
26 | 1A |
27 | 1B |
28 | 1C |
29 | 1D |
30 | 1E |
31 | 1F |
32 | 20 |
33 | 21 |
34 | 22 |
35 | 23 |
36 | 24 |
37 | 25 |
38 | 26 |
39 | 27 |
40 | 28 |
41 | 29 |
42 | 2A |
43 | 2B |
44 | 2C |
45 | 2D |
46 | 2E |
47 | 2F |
48 | 30 |
49 | 31 |
50 | 32 |
51 | 33 |
52 | 34 |
53 | 35 |
54 | 36 |
55 | 37 |
56 | 38 |
57 | 39 |
58 | 3A |
59 | 3B |
60 | 3C |
61 | 3D |
62 | 3E |
63 | 3F |
64 | 40 |
65 | 41 |
66 | 42 |
67 | 43 |
68 | 44 |
69 | 45 |
70 | 46 |
71 | 47 |
72 | 48 |
73 | 49 |
74 | 4A |
75 | 4B |
76 | 4C |
77 | 4D |
78 | 4E |
79 | 4F |
80 | 50 |
Decimal | Hexadecimal |
---|---|
81 | 51 |
82 | 52 |
83 | 53 |
84 | 54 |
85 | 55 |
86 | 56 |
87 | 57 |
88 | 58 |
89 | 59 |
90 | 5A |
91 | 5B |
92 | 5C |
93 | 5D |
94 | 5E |
95 | 5F |
96 | 60 |
97 | 61 |
98 | 62 |
99 | 63 |
100 | 64 |
101 | 65 |
102 | 66 |
103 | 67 |
104 | 68 |
105 | 69 |
106 | 6A |
107 | 6B |
108 | 6C |
109 | 6D |
110 | 6E |
111 | 6F |
112 | 70 |
113 | 71 |
114 | 72 |
115 | 73 |
116 | 74 |
117 | 75 |
118 | 76 |
119 | 77 |
120 | 78 |
121 | 79 |
122 | 7A |
123 | 7B |
124 | 7C |
125 | 7D |
126 | 7E |
127 | 7F |
128 | 80 |
129 | 81 |
130 | 82 |
131 | 83 |
132 | 84 |
133 | 85 |
134 | 86 |
135 | 87 |
136 | 88 |
137 | 89 |
138 | 8A |
139 | 8B |
140 | 8C |
141 | 8D |
142 | 8E |
143 | 8F |
144 | 90 |
145 | 91 |
146 | 92 |
147 | 93 |
148 | 94 |
149 | 95 |
150 | 96 |
151 | 97 |
152 | 98 |
153 | 99 |
154 | 9A |
155 | 9B |
156 | 9C |
157 | 9D |
158 | 9E |
159 | 9F |
160 | A0 |
Decimal | Hexadecimal |
---|---|
161 | A1 |
162 | A2 |
163 | A3 |
164 | A4 |
165 | A5 |
166 | A6 |
167 | A7 |
168 | A8 |
169 | A9 |
170 | AA |
171 | AB |
172 | AC |
173 | AD |
174 | AE |
175 | AF |
176 | B0 |
177 | B1 |
178 | B2 |
179 | B3 |
180 | B4 |
181 | B5 |
182 | B6 |
183 | B7 |
184 | B8 |
185 | B9 |
186 | BA |
187 | BB |
188 | BC |
189 | BD |
190 | BE |
191 | BF |
192 | C0 |
193 | C1 |
194 | C2 |
195 | C3 |
196 | C4 |
197 | C5 |
198 | C6 |
199 | C7 |
200 | C8 |
201 | C9 |
202 | CA |
203 | CB |
204 | CC |
205 | CD |
206 | CE |
207 | CF |
208 | D0 |
209 | D1 |
210 | D2 |
211 | D3 |
212 | D4 |
213 | D5 |
214 | D6 |
215 | D7 |
216 | D8 |
217 | D9 |
218 | DA |
219 | DB |
220 | DC |
221 | DD |
222 | DE |
223 | DF |
224 | E0 |
225 | E1 |
226 | E2 |
227 | E3 |
228 | E4 |
229 | E5 |
230 | E6 |
231 | E7 |
232 | E8 |
233 | E9 |
234 | EA |
235 | EB |
236 | EC |
237 | ED |
238 | EE |
239 | EF |
240 | F0 |
Decimal | Hexadecimal |
---|---|
241 | F1 |
242 | F2 |
243 | F3 |
244 | F4 |
245 | F5 |
246 | F6 |
247 | F7 |
248 | F8 |
249 | F9 |
250 | FA |
251 | FB |
252 | FC |
253 | FD |
254 | FE |
255 | FF |
256 | 100 |
257 | 101 |
258 | 102 |
259 | 103 |
260 | 104 |
261 | 105 |
262 | 106 |
263 | 107 |
264 | 108 |
265 | 109 |
266 | 10A |
267 | 10B |
268 | 10C |
269 | 10D |
270 | 10E |
271 | 10F |
272 | 110 |
273 | 111 |
274 | 112 |
275 | 113 |
276 | 114 |
277 | 115 |
278 | 116 |
279 | 117 |
280 | 118 |
281 | 119 |
282 | 11A |
283 | 11B |
284 | 11C |
285 | 11D |
286 | 11E |
287 | 11F |
288 | 120 |
289 | 121 |
290 | 122 |
291 | 123 |
292 | 124 |
293 | 125 |
294 | 126 |
295 | 127 |
296 | 128 |
297 | 129 |
298 | 12A |
299 | 12B |
300 | 12C |
301 | 12D |
302 | 12E |
303 | 12F |
304 | 130 |
305 | 131 |
306 | 132 |
307 | 133 |
308 | 134 |
309 | 135 |
310 | 136 |
311 | 137 |
312 | 138 |
313 | 139 |
314 | 13A |
315 | 13B |
316 | 13C |
317 | 13D |
318 | 13E |
319 | 13F |
320 | 140 |
Related Conversions
Please find the related numeric conversions.