Binary to Octal Converter
To use binary to octal converter, type a binary value e.g. "1000" and click on the Convert button and you will get the octal value of "10" on the right side. The binary to octal conversion is explained in detail below and octal values are based on radix "8" while binary values are based on radix "2". This converter only uses unsigned values for the binary to octal conversion.
Binary to Octal Conversion:
- Binary Numeral System
- Octal Numeral System
- How to Convert Binary to Octal
- How to Convert Binary Fraction to Octal
- Binary to Octal Examples
- FAQs (Binary to Octal Conversion)
- Binary to Octal Table
Binary Numeral System
The binary number system is a numeral system based on base-2, utilizing only two digits or bits: 0 and 1. Each digit in this system is referred to as a bit. In a binary number, every position corresponds to an increasing power of 2. Before the binary point, the rightmost bit represents 20 (ones place), the next represents 21 (twos place), followed by 22 (fours place), and so on. For fractional numbers after the binary point, bits represents the positions 2-1, 2-2 and so on.
Example:
Binary value (1101101.011)2 can be represented as:
Digit | Position | Power of 2 | Value |
---|---|---|---|
1 | 26 (Sixty-fours place) | 26 = 64 | 1 × 64 = 64 |
1 | 25 (Thirty-twos place) | 25 = 32 | 1 × 32 = 32 |
0 | 24 (Sixteens place) | 24 = 16 | 0 × 16 = 0 |
1 | 23 (Eights place) | 23 = 8 | 1 × 8 = 8 |
1 | 22 (Fours place) | 22 = 4 | 1 × 4 = 4 |
0 | 21 (Twos place) | 21 = 2 | 0 × 2 = 0 |
1 | 20 (Ones place) | 20 = 1 | 1 × 1 = 1 |
0 | 2-1 (Halves place) | 2-1 = 0.5 | 0 × 0.5 = 0 |
1 | 2-2 (Quarters place) | 2-2 = 0.25 | 1 × 0.25 = 0.25 |
1 | 2-3 (Eighths place) | 2-3 = 0.125 | 1 × 0.125 = 0.125 |
(1101101.011)2 = (1 × 26) + (1 × 25) + (0 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (0 × 2-1) + (1 × 2-2) + (1 × 2-3) = (64 + 32 + 8 + 4 + 1 + 0.25 + 0.125) = (109.375)10 (Decimal)
Octal Numeral System
An octal number is a value expressed in the base-8 numeral system, using the digits 0 to 7. Each digit’s position represents a power of 8. For whole numbers, the rightmost digit is 80, the next is 81, then 82, and so on. For fractional parts, positions after the octal point represent decreasing powers: 8-1, 8-2, 8-3, etc.
Example:
Octal value "6756.27" can be represented as powers to the base 8:
Digit | Position | Power of 8 | Value |
---|---|---|---|
6 | 83 place | 83 = 512 | 6 × 512 = 3072 |
7 | 82 place | 82 = 64 | 7 × 64 = 448 |
5 | 81 place | 81 = 8 | 5 × 8 = 40 |
6 | 80 place | 80 = 1 | 6 × 1 = 6 |
2 | 8-1 place | 8-1 = 0.125 | 2 × 0.125 = 0.25 |
7 | 8-2 place | 8-2 = 0.015625 | 7 × 0.015625 = 0.109375 |
(6756.27)8 = (6 × 83) + (7 × 82) + (5 × 81) + (6 × 80) + (2 × 8-1) + (7 × 8-2) = 3072 + 448 + 40 + 6 + 0.25 + 0.109375 = (3566.359375)10
How to Convert Binary to Octal
Every octal digit is represented by 3 bits. For Example 7 can be expressed in binary as "111" and 5 can be expressed as "101". Follow the following steps to convert the binary number to the octal value:
Step-1: Divide the binary number into groups of three bits each and assign powers of 2 to every bit based on its position.
Step-2: Multiply each bit by its corresponding power of 2 and sum up the results within each group.
Step-3: Combine the computed values from all groups to obtain the equivalent octal number.
How to Convert Binary Fraction to Octal
Follow these steps to convert binary fractional value to the octal:
Step-1: Extract only the fractional part after the binary point. For example, in 1011.1101, the fractional part is 1101.
Step-2: Divide the fractional bits into groups of 3. If the last group has fewer than 3 bits, add trailing zeros to complete it.
Step-3: Convert each 3-bit group into its octal equivalent and combine them to form the final fractional octal value.
Binary to Octal Examples
Example 1: Convert (01011)2 to Octal value.
Group 1 | Group 2 | |||||||
---|---|---|---|---|---|---|---|---|
22 | 21 | 20 | 22 | 21 | 20 | |||
Position: | 4 | 2 | 1 | 4 | 2 | 1 | ||
Bits: | 0 | 0 | 1 | 0 | 1 | 1 |
Group 1 | Group 2 | |||||||
---|---|---|---|---|---|---|---|---|
Results: | = | (4×0) + (2×0) + (1×1) | = | (4×0) + (2×1) + (1×1) | ||||
= | 0 + 0 + 1 | = | 0 + 2 + 1 | |||||
= | (1)8 | = | (3)8 |
Example 2: Convert (1011111)2 to octal value.
Group 1 | Group 2 | Group 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||
Position: | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | |||
Bits: | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Group 1 | Group 2 | Group 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Results: | = | (4×0) + (2×0) + (1×1) | = | (4×0) + (2×1) + (1×1) | = | (4×1) + (2×1) + (1×1) | |||||||
= | 0 + 0 + 1 | = | 0 + 2 + 1 | = | 4 + 2 + 1 | ||||||||
= | (1)8 | = | (3)8 | = | (7)8 |
Example 3: Convert (10011101)2 to octal value.
Group 1 | Group 2 | Group 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||
Position: | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | |||
Bits: | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
Group 1 | Group 2 | Group 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Results: | = | (4×0) + (2×1) + (1×0) | = | (4×0) + (2×1) + (1×1) | = | (4×1) + (2×0) + (1×1) | |||||||
= | 0 + 2 + 0 | = | 0 + 2 + 1 | = | 4 + 0 + 1 | ||||||||
= | (2)8 | = | (3)8 | = | (5)8 |
Example 4: Convert (1110.10)2 to octal value.
Group 1 | Group 2 | Group 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
22 | 21 | 20 | 22 | 21 | 20 | 22 | 21 | 20 | ||||
Position: | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | |||
Bits: | 0 | 0 | 1 | 1 | 1 | 0. | 1 | 0 | 0 |
Group 1 | Group 2 | Group 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Results: | = | (4×0) + (2×0) + (1×1) | = | (4×1) + (2×1) + (1×0) | = | (4×1) + (2×0) + (1×0) | |||||||
= | 0 + 0 + 1 | = | 4 + 2 + 0 | = | 4 + 0 + 0 | ||||||||
= | (1)8 | = | (6)8. | = | (4)8 |
Frequently Ask Questions: Binary to Octal Conversion
Q1: Convert signed 8-bit binary (11101010)2 value to octal?
Since MSB = 1, it is a negative number, therefore, use 2’s complement:
The magnitude of the value is:
Invert bits: (00010101)2
Add 1: 00010101 + 1 = (00010110)2 = (22)10 in decimal.
Group the binary number into 3 bits by adding zero padding on left side: 000 010 110
000 = 0, 010 = 2, 110 = 6, Therefore the octal value is (-26)8
Q2: Convert (101010101010)2 to octal using 8-bit truncation?
While doing the truncation you need to take 8 bits starting from the left side (LSB), the truncated 8-bit value is (10101010)2
Group them into 3-bits as you can do zero padding on left side: 010 101 010.
Convert them to the octal values 010 = 2, 101 = 6, 010 = 2, Hence octal value is: (262)8.
Remember that the truncation results in the data loss as the 4 bits have been removed.
Q3: Convert large binary value (11001011011110011010)2 to octal?
First split them into 3-bit groups: 11 001 011 011 110 011 010
Add zero padding on left side: 011 001 011 011 110 011 010
Convert 3 bit values to octal: 011 = 3, 001 = 1, 011 = 3, 011 = 3, 110 = 6, 011 = 3, 010 = 2
Final Octal value is: (3133632)8
Q4: Perform a bitwise OR operation on the following two 8-bit binary numbers and express the result in octal?
A = (10110110)2 and B = (11001101)2
A = 10110110
B = 11001101
---------------------------------
A | B (Bitwise OR) = 11111111
Group the binary number into 3-bits groups: 011 111 111
011 = 3, 111 = 7, 111 = 7
(11111111)2 = (377)8
Q5: Subtract the following binary numbers and provide the result in octal?
A = (11011010)2 and B = (10101101)2
Convert the binary numbers to their corresponding decimal values: (11011010)2 = (218)10 and (10101101)2 = (173)10
A - B = 218 - 173 = 45
(45)10 = (00101101)2
Group the bits into 3-bits: 000 101 101
000 = 0, 101 = 5, 101 = 5, Therefore the octal value is (55)8
Binary to Octal Conversion Table
Binary | Octal |
---|---|
00000001 | 1 |
00000010 | 2 |
00000011 | 3 |
00000100 | 4 |
00000101 | 5 |
00000110 | 6 |
00000111 | 7 |
00001000 | 10 |
00001001 | 11 |
00001010 | 12 |
00001011 | 13 |
00001100 | 14 |
00001101 | 15 |
00001110 | 16 |
00001111 | 17 |
00010000 | 20 |
00010001 | 21 |
00010010 | 22 |
00010011 | 23 |
00010100 | 24 |
00010101 | 25 |
00010110 | 26 |
00010111 | 27 |
00011000 | 30 |
00011001 | 31 |
00011010 | 32 |
00011011 | 33 |
00011100 | 34 |
00011101 | 35 |
00011110 | 36 |
00011111 | 37 |
00100000 | 40 |
00100001 | 41 |
00100010 | 42 |
00100011 | 43 |
00100100 | 44 |
00100101 | 45 |
00100110 | 46 |
00100111 | 47 |
00101000 | 50 |
00101001 | 51 |
00101010 | 52 |
00101011 | 53 |
00101100 | 54 |
00101101 | 55 |
00101110 | 56 |
00101111 | 57 |
00110000 | 60 |
00110001 | 61 |
00110010 | 62 |
00110011 | 63 |
00110100 | 64 |
00110101 | 65 |
00110110 | 66 |
00110111 | 67 |
00111000 | 70 |
00111001 | 71 |
00111010 | 72 |
00111011 | 73 |
00111100 | 74 |
00111101 | 75 |
00111110 | 76 |
00111111 | 77 |
01000000 | 100 |
Binary | Octal |
---|---|
01000001 | 101 |
01000010 | 102 |
01000011 | 103 |
01000100 | 104 |
01000101 | 105 |
01000110 | 106 |
01000111 | 107 |
01001000 | 110 |
01001001 | 111 |
01001010 | 112 |
01001011 | 113 |
01001100 | 114 |
01001101 | 115 |
01001110 | 116 |
01001111 | 117 |
01010000 | 120 |
01010001 | 121 |
01010010 | 122 |
01010011 | 123 |
01010100 | 124 |
01010101 | 125 |
01010110 | 126 |
01010111 | 127 |
01011000 | 130 |
01011001 | 131 |
01011010 | 132 |
01011011 | 133 |
01011100 | 134 |
01011101 | 135 |
01011110 | 136 |
01011111 | 137 |
01100000 | 140 |
01100001 | 141 |
01100010 | 142 |
01100011 | 143 |
01100100 | 144 |
01100101 | 145 |
01100110 | 146 |
01100111 | 147 |
01101000 | 150 |
01101001 | 151 |
01101010 | 152 |
01101011 | 153 |
01101100 | 154 |
01101101 | 155 |
01101110 | 156 |
01101111 | 157 |
01110000 | 160 |
01110001 | 161 |
01110010 | 162 |
01110011 | 163 |
01110100 | 164 |
01110101 | 165 |
01110110 | 166 |
01110111 | 167 |
01111000 | 170 |
01111001 | 171 |
01111010 | 172 |
01111011 | 173 |
01111100 | 174 |
01111101 | 175 |
01111110 | 176 |
01111111 | 177 |
10000000 | 200 |
Binary | Octal |
---|---|
10000001 | 201 |
10000010 | 202 |
10000011 | 203 |
10000100 | 204 |
10000101 | 205 |
10000110 | 206 |
10000111 | 207 |
10001000 | 210 |
10001001 | 211 |
10001010 | 212 |
10001011 | 213 |
10001100 | 214 |
10001101 | 215 |
10001110 | 216 |
10001111 | 217 |
10010000 | 220 |
10010001 | 221 |
10010010 | 222 |
10010011 | 223 |
10010100 | 224 |
10010101 | 225 |
10010110 | 226 |
10010111 | 227 |
10011000 | 230 |
10011001 | 231 |
10011010 | 232 |
10011011 | 233 |
10011100 | 234 |
10011101 | 235 |
10011110 | 236 |
10011111 | 237 |
10100000 | 240 |
10100001 | 241 |
10100010 | 242 |
10100011 | 243 |
10100100 | 244 |
10100101 | 245 |
10100110 | 246 |
10100111 | 247 |
10101000 | 250 |
10101001 | 251 |
10101010 | 252 |
10101011 | 253 |
10101100 | 254 |
10101101 | 255 |
10101110 | 256 |
10101111 | 257 |
10110000 | 260 |
10110001 | 261 |
10110010 | 262 |
10110011 | 263 |
10110100 | 264 |
10110101 | 265 |
10110110 | 266 |
10110111 | 267 |
10111000 | 270 |
10111001 | 271 |
10111010 | 272 |
10111011 | 273 |
10111100 | 274 |
10111101 | 275 |
10111110 | 276 |
10111111 | 277 |
11000000 | 300 |
Binary | Octal |
---|---|
11000001 | 301 |
11000010 | 302 |
11000011 | 303 |
11000100 | 304 |
11000101 | 305 |
11000110 | 306 |
11000111 | 307 |
11001000 | 310 |
11001001 | 311 |
11001010 | 312 |
11001011 | 313 |
11001100 | 314 |
11001101 | 315 |
11001110 | 316 |
11001111 | 317 |
11010000 | 320 |
11010001 | 321 |
11010010 | 322 |
11010011 | 323 |
11010100 | 324 |
11010101 | 325 |
11010110 | 326 |
11010111 | 327 |
11011000 | 330 |
11011001 | 331 |
11011010 | 332 |
11011011 | 333 |
11011100 | 334 |
11011101 | 335 |
11011110 | 336 |
11011111 | 337 |
11100000 | 340 |
11100001 | 341 |
11100010 | 342 |
11100011 | 343 |
11100100 | 344 |
11100101 | 345 |
11100110 | 346 |
11100111 | 347 |
11101000 | 350 |
11101001 | 351 |
11101010 | 352 |
11101011 | 353 |
11101100 | 354 |
11101101 | 355 |
11101110 | 356 |
11101111 | 357 |
11110000 | 360 |
11110001 | 361 |
11110010 | 362 |
11110011 | 363 |
11110100 | 364 |
11110101 | 365 |
11110110 | 366 |
11110111 | 367 |
11111000 | 370 |
11111001 | 371 |
11111010 | 372 |
11111011 | 373 |
11111100 | 374 |
11111101 | 375 |
11111110 | 376 |
11111111 | 377 |
Related Conversions
Please find the related numeric conversions.
- ASCII Text to Binary
- ASCII Text to Decimal
- ASCII Text to Hex
- Binary to ASCII Text
- Binary to Decimal
- Binary to Hex
- Decimal to ASCII Text
- Decimal to Binary
- Decimal to Hex
- Decimal to Octal
- Hex to ASCII Text
- Hex to Binary
- Hex to Decimal
- Hex to Octal
- Octal to Binary
- Octal to Decimal
- Octal to Hex
You may also like:
- Angle conversions
- Degrees to Radians Converter
- 1 degrees to radians conversion
- 30 degrees to radians conversion
- 45 degrees to radians conversion
- 90 degrees to radians conversion
- 180 degrees to radians conversion
- 270 degrees to radians conversion
- 360 degrees to radians conversion
- Windows ALT Codes
- UTF-8 codes