Home Conversion Number Decimal to Binary

Decimal to Binary Converter

To use decimal to binary converter, type a decimal value e.g. "16" and click on the Convert button and you will get the binary value "00010000" on the right hand side.

Decimal to Binary Conversion:

Binary (With Padding)    = 00011001
Binary (Without Padding) = 11001

Decimal Numeral System

The decimal system is built on base 10, meaning it relies on ten unique digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each position of a digit in a decimal number represents a power of 10, moving from left to right for whole numbers (100, 101, 102, etc.) and right to left for fractional values (10-1, 10-2, etc.). This positional notation is what allows us to represent very large or very small values efficiently.

Example:

Consider the decimal number "3047.82" in the decimal system.

Digit Position Power of 10 Value
3 103 (Thousands place) 103 = 1000 3 × 1000 = 3000
0 102 (Hundreds place) 102 = 100 0 × 100 = 0
4 101 (Tens place) 101 = 10 4 × 10 = 40
7 100 (Ones place) 100 = 1 7 × 1 = 7
8 10-1 (Tenths place) 10-1 = 0.1 8 × 0.1 = 0.8
2 10-2 (Hundredths place) 10-2 = 0.01 2 × 0.01 = 0.02

Total = (3 × 103) + (0 × 102) + (4 × 101) + (7 × 100) + (8 × 10-1) + (2 × 10-2) = 3000 + 40 + 7 + 0.8 + 0.02 = 3047.82

Binary Numeral System

The binary number system is a base-2 numeral system that uses only two symbols: 0 and 1 and each symbol is also called as 1 bit. Each position in a binary number represents a power of 2, instead of 10 (as in decimal). The rightmost digit is 20 (ones place), the next is 21 (twos place), then 22 (fours place), and so on. Binary is fundamental in computing because digital circuits operate with two states: on (1) and off (0).

Example:

Consider the binary number "1011.01", it can be expressed as:

Digit Position Power of 2 Value
1 23 (Eights place) 23 = 8 1 × 8 = 8
0 22 (Fours place) 22 = 4 0 × 4 = 0
1 21 (Twos place) 21 = 2 1 × 2 = 2
1 20 (Ones place) 20 = 1 1 × 1 = 1
0 2-1 (Halves place) 2-1 = 0.5 0 × 0.5 = 0
1 2-2 (Quarters place) 2-2 = 0.25 1 × 0.25 = 0.25

Therefore (1110)2 = (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) + (0 × 2-1) + (1 × 2-2) = (8 + 2 + 1 + 0.25) = (11.25)10 (Decimal)

How to Convert Decimal to Binary

Consider the following steps to convert a decimal number to a binary number:

How to Convert Fractional Decimal Part to Binary Number

Follow these steps to convert fractional decimal value to binary:

Decimal to Binary Examples

Example 1: Convert decimal number 9 to a binary value.

Division Quotient Remainder Bit Position
(from right)
Bit Value
9/2 = 4.5 4 1 20 1
4/2 = 2 2 0 21 0
2/2 = 1 1 0 22 0
1/2 = 0.5 0 1 23 1
  • Considering the bit positions and the remainder values from the above table,
  • (9)10 = (1001)2
  • Example 2: Convert decimal number 184 to a binary value.

    Division Quotient Remainder Bit Position
    (from right)
    Bit Value
    184/2 = 92 92 0 20 0
    92/2 = 46 46 0 21 0
    46/2 = 23 23 0 22 0
    23/2 = 11.5 11 1 23 1
    11/2 = 5.5 5 1 24 1
    5/2 = 2.5 2 1 25 1
    2/2 = 1 1 0 26 0
    1/2 = 0.5 0 1 27 1
  • Combine together all the remainder values by checking the bit positions,
  • (184)10 = (10111000)2
  • Example 3: Convert 1678 to a binary value.

    Division Quotient Remainder Bit Position
    (from right)
    Bit Value
    1678/2 = 839 839 0 20 0
    839/2 = 419 419 1 21 1
    419/2 = 209 209 1 22 1
    209/2 = 104 104 1 23 1
    104/2 = 52 52 0 24 0
    52/2 = 26 26 0 25 0
    26/2 = 13 13 0 26 0
    13/2 = 6 6 1 27 1
    6/2 = 3 3 0 28 0
    3/2 = 1 1 1 29 1
    1/2 = 0 0 1 210 1
  • Final binary value is:
  • (1678)10 = (11010001110)2
  • Example 4: Convert 734.75 to a binary value.

  • Integer Part (734):
  • Division Quotient Remainder Bit Position Bit Value
     
    734/2 = 3673670200
    367/2 = 1831831211
    183/2 = 91911221
    91/2 = 45451231
    45/2 = 22221241
    22/2 = 11110250
    11/2 = 551261
    5/2 = 221271
    2/2 = 110280
    1/2 = 001291
     
  • Fractional Part (0.75):
  • Multiplication by 2 Product Fractional Remainder Bit Position Integer Part (Decimal)
    0.75 × 2 = 1.51.50.52-11
    0.5 × 2 = 1.01.002-21
  • Binary value is:
  • (734.75)10 = (1011011110.11)2
  • Example 5: Convert 750.375 to a binary value.

  • Integer Part (750):
  • Division Quotient Remainder Bit Position Bit Value
    Integer Part (750)
     
    750/2 = 3753750200
    375/2 = 1871871211
    187/2 = 93931221
    93/2 = 46461231
    46/2 = 23230240
    23/2 = 11111251
    11/2 = 551261
    5/2 = 221271
    2/2 = 110280
    1/2 = 001291
     
  • Fractional Part (0.375):
  • Multiplication by 2 Product Fractional Remainder Bit Position Integer Part (Decimal)
    0.375 × 2 = 0.750.750.752-10
    0.75 × 2 = 1.51.50.52-21
    0.5 × 2 = 1.01.002-31
  • Binary value is:
  • (750.375)10 = (1011101110.011)2
  • Frequently Ask Questions: Decimal to Binary Conversion

    Q1: Why do some decimal fractions (like 0.1) not convert exactly into binary?

    Because binary is base-2, and some fractions in base-10 require infinite repeating bits in base-2 (just like 1/3 = 0.333... in decimal). The value of 0.1 decimal in binary is converted to (0.0001100110011001101)2.

    Q2: How do you verify that your decimal to binary conversion is correct?

    Multiply each binary digit by its positional value (2n for integers, 2-n for fractions) and sum them back to get the original decimal.

    Q3: What are the binary equivalents of common decimal fractions values like 0.5, 0.25, 0.75?

    (0.5)10 = (0.1)2 , (0.25)10 = (0.01)2 , (0.75)10 = (0.11)2

    Q4: What is the shortcut to convert a decimal number that is a power of 2 into binary?

    Write 1 followed by the same number of zeros as the exponent value. For example, the decimal value (32)10 = 25 = (100000)2. Similarly, (128)10 = 27 = (10000000)2

    Q5: Why is decimal to binary conversion so important in computers?

    Ccomputers store and process all data using base-2 (series of 1s and 0s). This binary data is stores in temporary and permanent memory locations e.g. RAM, Hard Drives, SSDs etc.

    Decimal to Binary Table

    DecimalBinary
    100000001
    200000010
    300000011
    400000100
    500000101
    600000110
    700000111
    800001000
    900001001
    1000001010
    1100001011
    1200001100
    1300001101
    1400001110
    1500001111
    1600010000
    1700010001
    1800010010
    1900010011
    2000010100
    2100010101
    2200010110
    2300010111
    2400011000
    2500011001
    2600011010
    2700011011
    2800011100
    2900011101
    3000011110
    3100011111
    3200100000
    3300100001
    3400100010
    3500100011
    3600100100
    3700100101
    3800100110
    3900100111
    4000101000
    4100101001
    4200101010
    4300101011
    4400101100
    4500101101
    4600101110
    4700101111
    4800110000
    4900110001
    5000110010
    5100110011
    5200110100
    5300110101
    5400110110
    5500110111
    5600111000
    5700111001
    5800111010
    5900111011
    6000111100
    6100111101
    6200111110
    6300111111
    6401000000
    DecimalBinary
    6501000001
    6601000010
    6701000011
    6801000100
    6901000101
    7001000110
    7101000111
    7201001000
    7301001001
    7401001010
    7501001011
    7601001100
    7701001101
    7801001110
    7901001111
    8001010000
    8101010001
    8201010010
    8301010011
    8401010100
    8501010101
    8601010110
    8701010111
    8801011000
    8901011001
    9001011010
    9101011011
    9201011100
    9301011101
    9401011110
    9501011111
    9601100000
    9701100001
    9801100010
    9901100011
    10001100100
    10101100101
    10201100110
    10301100111
    10401101000
    10501101001
    10601101010
    10701101011
    10801101100
    10901101101
    11001101110
    11101101111
    11201110000
    11301110001
    11401110010
    11501110011
    11601110100
    11701110101
    11801110110
    11901110111
    12001111000
    12101111001
    12201111010
    12301111011
    12401111100
    12501111101
    12601111110
    12701111111
    12810000000
    DecimalBinary
    12910000001
    13010000010
    13110000011
    13210000100
    13310000101
    13410000110
    13510000111
    13610001000
    13710001001
    13810001010
    13910001011
    14010001100
    14110001101
    14210001110
    14310001111
    14410010000
    14510010001
    14610010010
    14710010011
    14810010100
    14910010101
    15010010110
    15110010111
    15210011000
    15310011001
    15410011010
    15510011011
    15610011100
    15710011101
    15810011110
    15910011111
    16010100000
    16110100001
    16210100010
    16310100011
    16410100100
    16510100101
    16610100110
    16710100111
    16810101000
    16910101001
    17010101010
    17110101011
    17210101100
    17310101101
    17410101110
    17510101111
    17610110000
    17710110001
    17810110010
    17910110011
    18010110100
    18110110101
    18210110110
    18310110111
    18410111000
    18510111001
    18610111010
    18710111011
    18810111100
    18910111101
    19010111110
    19110111111
    19211000000
    DecimalBinary
    19311000001
    19411000010
    19511000011
    19611000100
    19711000101
    19811000110
    19911000111
    20011001000
    20111001001
    20211001010
    20311001011
    20411001100
    20511001101
    20611001110
    20711001111
    20811010000
    20911010001
    21011010010
    21111010011
    21211010100
    21311010101
    21411010110
    21511010111
    21611011000
    21711011001
    21811011010
    21911011011
    22011011100
    22111011101
    22211011110
    22311011111
    22411100000
    22511100001
    22611100010
    22711100011
    22811100100
    22911100101
    23011100110
    23111100111
    23211101000
    23311101001
    23411101010
    23511101011
    23611101100
    23711101101
    23811101110
    23911101111
    24011110000
    24111110001
    24211110010
    24311110011
    24411110100
    24511110101
    24611110110
    24711110111
    24811111000
    24911111001
    25011111010
    25111111011
    25211111100
    25311111101
    25411111110
    25511111111

    by Wasim Khan and it was last modified on

    Related Conversions

    Please find the related numeric conversions.